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Abstract  

Recently, ensemble post-processing (EPP) has become a commonly used approach for reducing  

the uncertainty in forcing data and hence hydrologic simulation. The procedure was introduced  

to build ensemble precipitation forecasts based on the statistical relationship between  

observations and forecasts. More specifically, the approach relies on a transfer function that is  

developed based on a bivariate joint distribution between the observations and the simulations in  

the historical period. The transfer function is used to post-process the forecast. In this study, we  

propose a Bayesian EPP approach based on copula functions (COP-EPP) to improve the  

reliability of the precipitation ensemble forecast. Evaluation of the copula-based method is  

carried out by comparing the performance of the generated ensemble precipitation with the  

outputs from an existing procedure, i.e. mixed type meta-Gaussian distribution. Monthly  

precipitation from Climate Forecast System Reanalysis (CFS) and gridded observation from  

Parameter-Elevation Relationships on Independent Slopes Model (PRISM) have been employed  

to generate the post-processed ensemble precipitation. Deterministic and probabilistic  

verification frameworks are utilized in order to evaluate the outputs from the proposed technique.  

Distribution of seasonal precipitation for the generated ensemble from the copula-based  

technique is compared to the observation and raw forecasts for three sub-basins located in the  
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Western United States. Results show that both techniques are successful in producing reliable 25 

and unbiased ensemble forecast, however, the COP-EPP demonstrates considerable 26 

improvement in the ensemble forecast in both deterministic and probabilistic verification, in 27 

particular in characterizing the extreme events in wet seasons.  28 

Post-Processing; Precipitation; Copulas; Climate Forecast System; Hydrologic Forecasting 29 

1. Introduction 30 

Uncertainty in hydrologic simulation and forecast arises from the uncertainties associated with 31 

the forcing data, parameters, initial condition, and hydrologic model structure. To achieve 32 

accurate hydrologic forecasts, each of these components should be estimated accurately. In the 33 

past few years, researchers have proposed various techniques to tackle uncertainty in hydrologic 34 

modeling from different angles. For instance, data assimilation is often proposed to deal with the 35 

uncertainty in the initial and boundary conditions ( DeChant and Moradkhani, 2014; Li et al., 36 

2009; Zehe and Blöschl, 2004).  The skill of forecasts can be enhanced by post-processing 37 

through multi-modeling (Duan et al., 2007; Madadgar and Moradkhani, 2014a; ; Najafi and 38 

Moradkhani, 2015), or other statistical methods, such as quantile mapping or non-parametric 39 

procedures (Madadgar et al., 2014; Wood and Schaake, 2008; Zhao et al., 2011; Zhao et al., 40 

2015); Generalized Linear Model Post-Processor (GLMPP) (Ye et al., 2014; Zhao et al., 2011); 41 

and the combination of data assimilation and post processing (Bourgin et al., 2014). In addition, 42 

characterizing uncertainty in forcing data has received attention in recent years (Clark and Vrugt, 43 

2006; Kavetski et al., 2006; Raleigh et al., 2015; Steinschneider et al., 2012). Moreover, 44 

techniques have been developed for generating ensemble meteorological forecasts (Clark et al., 45 

2004; Clark and Hay, 2004; Robertson et al., 2013; Schaake et al., 2007; Tao et al., 2014; Wu et 46 
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al., 2011; Zhao et al., 2011). Ensemble precipitation forecasts provide the forecasts of the most 47 

likely events as well as the uncertainty information. (Park et al., 2008; Tao et al., 2014).  48 

Products from the National Centers for Environmental Prediction (NCEP) models are available 49 

in a diverse range of spatial and temporal scales. For instance, Short Range Forecast System 50 

(SREF), Global Ensemble Forecast System (GEFS), and Climate Forecast System (CFS) are 51 

widely utilized in various studies (Kumar et al., 2012; Peng et al., 2013; Wang et al., 2014). 52 

Despite all of these developments in climate models, forecasts are still prone to bias in the mean 53 

and insufficient spread (Hamill and Whitaker, 2006; Hamill et al., 2006; Robertson et al., 2013; 54 

Tao et al., 2014; Wu et al., 2011). These errors are more significant in climate variables, such as 55 

precipitation, which are affected immensely by changes in spatial scale. Thus, it is recommended 56 

to not employ the ensemble products from climate models directly, due to three main reasons: 1) 57 

there is low accuracy in the ensemble climate forecasts, 2) The models are developed with 58 

various assumptions which may not necessarily hold for every regions, and 3) models are mostly 59 

developed for large scale applications, and therefore, even if the variables are free from error at 60 

their original scale, they might be biased at the catchment scale (Rayner et al., 2005; Tao et al., 61 

2014; Wu et al., 2011) .  62 

There is a demand for methods that are able to generate reliable ensemble forecasts for 63 

hydrologic applications. A promising approach is to apply statistical procedures to generate 64 

ensemble forecast from Numerical Weather Prediction (NWP) -generated single-value forecasts. 65 

The procedure is based on the bivariate probability distribution between the observation and the 66 

single-value precipitation forecast. In the past few years, various methods were applied to meet 67 

this objective. Kelly and Krzysztofowicz (1997) developed a bivariate meta-Gaussian 68 

distribution function based on a normal quantile transformation of two variables according to the 69 
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Gaussian law in the Bayesian Forecasting System (BFS). The method was later used by 70 

Krzysztofowicz and Herr (2001) to assess the uncertainty in the precipitation data. Clark and 71 

Hay (2004) employed Model Output Statistics (MOS) to downscale the model outputs of Global 72 

Forecast System (GFS), a medium range forecast system, developed in the National Weather 73 

Service (NWS) cooperative network. To preserve and represent  space-time variability of climate 74 

variables, Clark et al. (2004) introduced a procedure, the so called Schaake Shuffle 75 

reconstructing the ensemble members according to the historical values. Schaake et al. (2007) 76 

described a full procedure, which is used at the National Weather Service River Forecasting 77 

System (NWSRFS) for developing the ensemble meteorological forecasts as the input to the 78 

ESP. It is based on the mixed distribution of the two variables and applying the normal quantile 79 

transformation for building the joint distribution between the two non-normal variables. In 80 

addition to the above mentioned methods, Linear Regression methods have been employed in 81 

various studies to post-process precipitation at different temporal and spatial scales (Roulin & 82 

Vannitsem, 2012; Sumner, Homar, & Ramis, 2001; Wilks, 2009). 83 

Recently, Wu et al. (2011) developed the Mixed type meta-Gaussian  joint distribution built upon 84 

the method of Kelly and Krzysztofowicz (1997), which models the precipitation intermittency 85 

decisively in comparison to the Schaake et al. (2007) method, which models each of the marginal 86 

distributions as a convex combination of the continuous distributions. Robertson et al. (2013) 87 

used the Bayesian Joint Probability approach (BJP) developed by Wang and Robertson (2011), 88 

and Wang et al. (2009) for generating the ensemble precipitation forecast for a sub-daily weather 89 

forecast in Australia. The number of parameters is one of the challenges in EPP; therefore, one of 90 

the merits of BJP is that it uses a lesser number of parameters. Tao et al. (2014) employed EPP in 91 

combination with multi-modeling to generate a more reliable forecast from The Observing 92 
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System Research and Predictability Experiment (THORPEX) Interactive Grand Global 93 

Ensemble (TIGGE) products. 94 

According to the above methods, it is assumed that the joint probability distribution between the 95 

observations and the forecasts is following a multivariate normal distribution. Furthermore, using 96 

normal joint distribution leads to the necessity for a transformation of the non-Gaussian variable 97 

into the normal space. The transformation may affect the accuracy of the estimated probability 98 

distribution (Brown and Seo, 2013; Madadgar and Moradkhani, 2014a). Therefore, Brown and 99 

Seo (2013) introduced a nonparametric probability distribution. Also, Madadgar et al. (2014) 100 

demonstrated that the nonparametric probability distributions are highly dependent on the 101 

number of thresholds for observed variables. Consequently, it is beneficial to develop a 102 

procedure that can capture the uncertainty in a way that there would be no need for variable 103 

transformation, and simultaneously adopt a true probability distribution between observation and 104 

forecast. Sklar (1959) introduced the concept of constructing multivariate distributions using 105 

copulas. Copula functions are useful in capturing the dependency in most of the multivariate 106 

distributions such as, bivariate Pareto and bivariate gamma. Copula functions have the capability 107 

to draw the joint distribution regardless of the marginal distribution (Favre et al., 2004; Joe, 108 

1997). Copula functions have been used substantially in hydrological applications including 109 

precipitation estimation and drought forecasting (Bárdossy, 2006; Bárdossy and Pegram, 2013; 110 

Bárdossy and Pegram, 2014; Dung et al., 2015; Favre et al., 2004; Madadgar and Moradkhani, 111 

2013; Madadgar and Moradkhani, 2014b; Salvadori and De Michele, 2010). Madadgar et al. 112 

(2014) proposed copula functions to construct the joint distribution between two variables with 113 

any level of dependency because they have the potential to be applicable in post-processing the 114 

hydrological simulation based on the observation and modeled streamflow simulations. They 115 
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showed that the copula-based method could provide a more accurate and skillful forecast in 116 

comparison to the quantile mapping approach, a widely-used post-processing method.  117 

In this study, we evaluate the capability of copula functions to build the joint distribution 118 

between the observation and climatological forecast. This paper is organized in five sections. 119 

The introduction is followed by methodology in Section 2, which includes a description of the 120 

two techniques that are used in the study, as well as the forecast verification metrics that are 121 

employed to evaluate the generated forecasts. Section 3 describes the data and study area. 122 

Results and discussion are elaborated in Section 4, and finally, the summary and conclusion are 123 

provided in Section 5. 124 

2. Methodology 125 

The main assumptions in post-processing the forecasts are that the observation and forecast are 126 

correlated, and that future behavior of the system will remain the same. The purpose of this study 127 

is to integrate copula functions into the EPP framework. Copula functions relax these 128 

assumptions, and are able to build ensemble forecasts based on historical observations and 129 

climatological forecasts. To assess the robustness and reliability of this new technique, results 130 

are compared with the outputs from an existing approach called Mixed type Bivariate meta-131 

Gaussian distribution (MBG), introduced by Wu et al. (2011). The theory of copula functions is 132 

provided below.  133 

2.1. Data classification and Marginal Distribution 134 

The dataset is divided into twelve monthly classes, and the procedure is applied to each class 135 

separately. The procedure starts with fitting different marginal distributions to the observations 136 

and forecasts. These distributions include Weibull, Exponential, Lognormal, and Gamma, which 137 

are well suited to non-negative data (i.e. precipitation in this case). Furthermore, they are 138 
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powerful in representing the extreme values of precipitation data. To find the best marginal 139 

distribution that can describe the observation and forecast values, Bayesian Information Criterion 140 

(BIC) and Kolmogorov-Smirnov (K-S) tests are employed. For a detailed description of these 141 

tests, readers are referred to Aho et al. (2014),  Raftery (1986), and Stephens (1974). 142 

2.2. Bivariate Meta-Gaussian Distribution (MBG) Approach 143 

Here we discuss generating ensembles through the MBG method (Wu et al., 2011).  The goal of 144 

this approach is to build the joint cdf of two variables, the observation (O), and the forecast (Y), 145 

and then perform sampling from this cdf to generate the ensemble members at each time step. 146 

                                                            

Since the joint cdf is going to be built based on the bivariate meta-Gaussian distribution, 147 

probability distribution of observation and forecast requires to be transformed into normal space. 148 

Normal Quantile Transform (NQT) is employed to derive W and Z as the replacements of F(O) 149 

and F(Y), the cdfs of observation and forecast in the normal space, respectively.  150 

                                                                     

                                                                            

Where, Q denotes the standard normal distribution function. 151 

2.2.1. Building and Sampling from the Conditional Joint Distribution 152 

In this step, the conditional distribution between the observation and forecast is formed. By 153 

replacing the y and o by z and w respectively, it is assumed that the joint distribution between 154 

observation and forecast would be equal to the bivariate normal joint distribution between z and 155 

w (         : 156 
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where H (y, o; ρ) is the bivariate meta-Gaussian distribution of Y and O, as introduced by Kelly 157 

and Krzysztofowicz (1997), and ρ is the Pearson product-moment correlation coefficient 158 

between Z and W. It can be assumed that: 159 

                                                           

According to the meta- Gaussian distribution of O and Y, the conditional distribution of O given 160 

Y=y can be written as follows: 161 

           
    

        
 
   
                          

To create the ensemble forecast at each time step, Equation (6) is being solved employing 162 

stratified sampling of the observation given forecast, and therefore we have                .  163 

The ensemble members will be generated by following the Equation (7) at each p-probability. 164 

          
              

 
                                                                       

2.2.2. The Schaake Shuffle 165 

To represent temporal dependence, the Schaake Shuffle is used to shuffle the ensemble members 166 

at each time step according to the historical observation. In this technique, the ensemble 167 

members are being ranked and matched with the historical data for the same month in the past. 168 

Then, the members will be reordered to follow the same order as the one for the historical data 169 

(Clark et al., 2004).  170 
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2.3. Ensemble Post-Processing Based on Copula Functions (COP-EPP) 171 

2.3.1. The Theory of Copula Functions  172 

Copula functions were introduced by Sklar (1959) as functions in the unit cube, which can link 173 

multi-dimensional distributions to their one-dimensional marginals. Mathematically, the n-174 

dimensional copula C is represented as:               . 175 

In the bivariate case, a copula satisfies the following property: 176 

                                                                                        

Where u and v are the marginal distributions of two random variables. In n-dimensional space, 177 

the original cumulative distribution can be written as: 178 

                                                  (                                        (9) 179 

       (                                                                                                               180 

Based on the derivative of cumulative density function (cdf) of the copula, the probability 181 

distribution function (pdf) of copula is obtained: 182 

            
             

        
                                                                                                             

The joint density function can then be written as follows: 183 

                                                                   
                                                            (12) 184 

There are several types of copula functions (Nelsen, 1999). Two of these families are applicable 185 

in hydrology, Archimedean and Elliptical (Nelsen, 1999; Sklar, 1959). In this study, five copula 186 

functions have been used: Gaussian and “t” from Elliptical, and Frank, Clayton, and Gumbel 187 

from Archimedean categories. 188 



10 
 

To find the best copula function that describes the relationship between observations and 189 

forecasts, we use Goodness of Fit (GoF) test statistics based on the distance between the 190 

empirical and parametric copula described by Genest et al. (2009). Cramer-von Mises and 191 

Kolmogorov-Smirnov statistics were used for measuring the distance (Anderson, 1962): 192 

       
 

                                   

                                                

Where Cn is the empirical copula with sample size of n, and Cθn is the theoretical copula 193 

estimated for a sample size of n. The null hypothesis assumes that the theoretical copula fits the 194 

data. Therefore, the copula function with the greatest p-value (p>0.05) and smallest Sn is desired. 195 

To calculate the p-value, parametric bootstrap procedure with 1000 iterations and α=0.01 is used. 196 

In this manner, the p-value is calculated as number of times that Sn-bootstrap is greater than Sn 197 

divided by the number of iterations. In this study, we have used Inference Functions for Margins 198 

(IFM) to estimate the parameters of copula functions (Dupuis, 2007; Joe, 1997).  199 

2.3.2. Ensemble Construction Based on Copula Functions 200 

Ensemble members are generated by sampling from the conditional pdf of the observation given 201 

forecast at each time step. In a Bayesian network, the joint distribution of observation and 202 

forecast can be simplified as follows: 203 

                                            

From Equation (15), the conditional probabilities can be derived as: 204 
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By using copula functions in estimating the joint pdf (Equation (12)), the conditional pdf 205 

(Equation (16)) can be decomposed to a simpler form as:  206 

         
                          

     
                                         

where          is the  conditional pdf of the sample and forecast at time t,       and       are 207 

the marginal pdf of the forecast, and the sample from the observation at time t.        is the 208 

copula pdf (Madadgar et al., 2014). 209 

The conditional pdf (         is built by Monte Carlo sampling from the copula density 210 

function (            ), in the following steps:1) The forecast is fixed at time t (       at 211 

time t), 2) Generate Us by sampling from the historical observation (500 samples in this study). 212 

3) compute the value of             . Now Equation (17a) is modified as follows:  213 

                                           

Following Schaake et al. (2007), to sample from the conditional pdf and to generate the 214 

ensemble of size n (in this study, 20) the probabilities at equal intervals (0.05, 0.1, 0.15, …, 0.95) 215 

are considered. Then, the ensemble members associated with above probabilities are obtained. 216 

To preserve the temporal variability, the Schaake Shuffle is used to shuffle the ensemble 217 

members at each time step according to the historical observation. Figure 1 demonstrates the 218 

schematic of COP-EPP procedure. 219 

Figure 1. Schematic of the Copula-based ensemble post-processing (COP-EPP). The ensemble 220 

members are generated by sampling from conditional pdf and reconstructed according to 221 

Schaake shuffle. 222 
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2.4. Forecast Verification  223 

To examine the robustness, reliability, and effectiveness of the proposed approach, results of 224 

both approaches, i.e. MBG and COP-EPP are compared through deterministic and probabilistic 225 

verification metrics. Accordingly, one deterministic and two probabilistic measures are chosen to 226 

evaluate the two generated ensembles. To have a clear comparison between results, normalized 227 

measures are employed.  For sufficient examination of results, the generated ensembles are 228 

analyzed during both the calibration and verification periods. 229 

2.4.1. Deterministic Measures 230 

To inspect the errors in the mean ensemble precipitation forecast, deterministic measures are 231 

used. Also, it would be beneficial to study the relationship between the observation and raw 232 

forecast in a deterministic framework.  233 

Absolute Percent bias evaluates the deviation of the ensemble mean from the observation. The 234 

optimal value of Absolute percent bias is zero (Gupta, Sorooshian, & Yapo, 1999; Moriasi et al., 235 

2007). 236 

                       
        
 
   

     
 
   

                           

To assess the accuracy of the forecast versus observation, the Kling-Gupta Efficiency (KGE) 237 

measure is utilized. KGE was introduced as the modified version of Nash-Sutcliffe Efficiency 238 

(NSE) by Gupta et al. (2009). This measure captures the correlation, bias, and variability in the 239 

forecast data versus the observation.  240 

                                                                       

                                          



13 
 

ED is defined as the Euclidean distance between two variables, r represents the linear correlation 241 

coefficient between the observation and forecast, α is the ratio of variance of forecast to variance 242 

in observation (relative variability in the forecast and observation), and β represents the ratio 243 

bias. ED is always non-negative, and thus KGE will have a value from -∞ to 1, with optimal 244 

value of 1. 245 

2.4.2. Probabilistic Measures 246 

Since the deterministic measures are affected by over or under -confident forecasts, it is essential 247 

to examine the generated forecast through probabilistic measures as well. Probabilistic measures 248 

are beneficial in assessing the reliability of ensemble forecast (DeChant and Moradkhani, 2014b; 249 

DeChant and Moradkhani, 2015). To assess the forecast skill of the generated ensembles, 250 

Continuous Ranked Probability Skill Score (CRPSS) is employed. This measure is the 251 

normalized version of Continuous Ranked Probability Score (CRPS) that has been introduced as 252 

the extension of Brier Score over all the possible thresholds (Hersbach, 2000). 253 

        
           

 

                                
   

    

   

and  254 

        
                     
                    

                 

Where  
      is the forecast probability, i.e. cdf of the forecast . In the deterministic case CRPS 255 

will be the same as MAE with the optimal value of zero. 256 
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CRPSref refers to the Continues Ranked Probability Score for the observation. The range for 257 

CRPSS is -∞ to one with optimal value of one. 258 

        
 

 
                                            
    259 

One of the techniques used to evaluate the forecast skill is to employ the Relative (or Receiver) 260 

Operating Characteristic (ROC) curve in which the hit rate and false- alarm are compared 261 

(Mason, 1982). The area under the curve represents the ROC score ranging between 0 and 1 with 262 

the perfect score of 1. In this study, the ROC score is used to examine the resolution of the 263 

generated forecast for winter precipitation (December, January, and February) during the 264 

verification period (2000-2014). 265 

The ROC score is not sensitive to bias in the forecast (Wilks, 2011); therefore, it can be 266 

considered as a measure for assessing the potential usefulness of a certain forecast. On the 267 

contrary, bias can affect the reliability of forecast (Murphy, 1993). Accordingly, the reliability of 268 

winter precipitation is evaluated based on the decomposition of the Brier score (Murphy, 1993)  269 

and calculating the reliability at threshold of a 95 percentile of the observation  as follows: 270 

                   (25) 271 

To calculate the reliability, it is important to group the forecasts into B forecast bins. Each bin 272 

has a population of , with an average forecast probability of  and an observed frequency of 273 

. For more details about reliability, readers are encouraged to refer to (Wilks, 2011). 274 
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3. Data and Study Area 275 

The applicability and usefulness of the methods are evaluated over three basins located in the 276 

Western United States, as shown in Figure 2. The characteristics of each of these three basins are 277 

summarized in Table 1.  278 

Figure 2. The location of three study basins in the Western USA. 279 

Table 1. Summary characteristics of the study basins. 280 

This study is conducted on monthly precipitation over the historical period (1979-2014). The 281 

first twenty-one years are used to calibrate the model, followed by fifteen years of validation 282 

period. The observation dataset is extracted from the Parameter-Elevation Relationships on 283 

Independent Slopes Model (PRISM) Climate Group, http://prism.oregonstate.edu. The observed                                                                                                            284 

precipitation includes rainfall and melted snow over 4km grid cells. 285 

Climate Forecast System Reanalysis (CFSR) and Climate Forecast System version 2 (CFSv2) 286 

developed by the National Centers for Environmental Prediction (NCEP) are utilized as the 287 

climatologic forecast (Saha et al., 2010; Saha et al., 2014). The six-hourly precipitation at 0.5°spatial 288 

resolution is chosen and accumulated to the monthly values for evaluation of forecast.  289 

To prepare the datasets for this study, the observation dataset is re-gridded to 0.5° ×0.5° 290 

resolution.  291 

4. Results and Discussion 292 

4.1. Raw Forecast Validation 293 

We begin by evaluating the relationship between the raw forecast and the observation. In order to 294 

achieve this objective, KGE is calculated for the raw forecast in relation to the observation for 295 

calibration period. Results are shown in Figure 3.  296 

http://prism.oregonstate.edu/
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Figure 3. Kling-Gupta efficiency measure for the raw forecast during calibration period. White 297 

grid cells in Rouge River Basin present missing observations. 298 

The acceptable range for KGE is considered to be above 0.6; therefore, results in Figure 3 show 299 

that the raw forecast does not have good skill as compared with the observation. More 300 

specifically, results show that the KGE is less than 0.6 for the major portion of all three basins, 301 

indicating that the observation mean is better in describing the precipitation event in comparison 302 

to the raw forecast. The above inspections lead to the conclusion that it is not appropriate to use 303 

the raw forecast. 304 

4.2. Selection of Copula Functions 305 

The experiment starts with finding the best copula function that describes the joint distribution 306 

between the observation and the forecast during the calibration period. As an example, Figure 4 307 

presents copula functions that successfully map the joint distribution for each month in each grid 308 

cell in the upper Colorado River Basin. The figure demonstrates that among the copula functions 309 

used in this basin, the Frank copula provides the best fit in describing the joint distribution 310 

between the observation and the raw forecast in most months. Further inspection reveals that this 311 

pattern is not followed for some of the months. As seen in Figure 4, the Clayton and T Copulas 312 

are the most chosen distributions in March. In June, Gumbel and T-Copula are the dominant 313 

copula functions chosen. 314 

 Figure 4. Selection of suitable copula functions for each grid cell across the Upper Colorado 315 

River Basin. 316 

According to Figure 4, copula functions will be fitted, and ensemble members will be built from 317 

the conditional pdf of sample variable given the raw forecast at each time step. Here, the 318 

ensemble precipitation forecast with twenty members will be generated.  319 
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4.3. Deterministic Verification  320 

The Absolute percent bias calculated for the study period (1979-2014) is presented in Figure 5. 321 

This Figure demonstrates the calculated Absolute percent bias distribution over the study basins 322 

for raw forecast and the bias-corrected ensemble means (i.e. MBG and COP-EPP). The highest 323 

bias for the raw forecast is found in the Upper Colorado basin where Absolute percent bias 324 

ranges from 50% to 300%. Both techniques improve the accuracy of the raw forecast by more 325 

than 50%. The improvement is more considerable in Rogue basin, where the average of the 326 

Absolute percent bias over the basin is reduced from 150% to 80% and 60% for MBG and COP-327 

EPP methods, respectively. COP-EPP method shows to be more effective in reducing the bias as 328 

compared to MBG method. Overall, there is a 20% difference between the two techniques across 329 

the study basins. 330 

Figure 5. Absolute percent bias distribution over the three study basins. The bias is calculated 331 

for the raw forecast (blue line), and the ensemble mean from the MGB and COP-EPP outputs 332 

(red and green lines, respectively). 333 

Results are evaluated with the KGE metric, which is a deterministic measure. A deterministic 334 

comparison has been done on the ensemble means of both methods in calibration and validation 335 

periods.  336 

Figure 6 shows the KGE results in the calibration and the validation periods for each study basin. 337 

Figures 3 and 6 show a significant improvement in generated forecast ensemble as compared to 338 

the raw precipitation forecast. In addition, COP-EPP shows about 10% higher KGE values than 339 

that of MBG during the calibration period. This is more significant for the validation period 340 

where the range of calculated KGE for COP-EPP is always larger than that of MBG. 341 

Furthermore, the discrepancy between the validation and the calibration period is less significant 342 
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in the COP-EPP method than in the MBG method. For instance, in the Rogue River Basin, the 343 

calculated KGE for the MBG method shows a decrease of 20% when compared with its 344 

calibration results; while this is not the case for COP-EPP. In the Upper Colorado Basin, the 345 

MBG method results in KGE values are less than 0.6 in some grids, which may not be 346 

considered accurate enough in some specific studies (Bisselink, Zambrano-Bigiarini, Burek, & 347 

de Roo, 2016; Thiemig, Rojas, Zambrano-Bigiarini, & De Roo, 2013).348 

Figure 6. KGE measure calculated over the study basins after post-processing using the COP-349 

EPP and MBG methods during calibration (left) and verification (right) periods.  350 

4.4. Probabilistic Verification 351 

Figure 7 shows the results for the probabilistic verification of the ensemble forecast generated by 352 

each method in each basin. This figure presents the CRPSS analysis for both the calibration and 353 

the validation periods. The results of the CRPSS analysis demonstrate a significant improvement 354 

of the raw forecast after EPP in both techniques, with a more significant improvement based on 355 

COP-EPP. During the calibration period, the copula method shows superior results by almost 356 

10% in comparison to the MBG’s results in all basins, whereas in Rogue River Basin, disparity 357 

in the MBG results is slightly higher, indicating that in basins with higher precipitation,  COP-358 

EPP  is more successful than MBG in generating more skillful ensemble forecasts. 359 

Figure 7 indicates that both methods result in higher values of CRPSS in the western parts of 360 

Upper Colorado River Basin. For central parts of Southern Snake Basin, CRPSS shows the 361 

lowest values for the generated ensemble precipitation compared to the observation. 362 

Significantly, the spatial pattern is maintained in the validation period for both techniques in all 363 

the basins. 364 
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Comparing the results for both techniques in the validation period indicates that copula outputs 365 

are more successful in preserving the accuracy of the generated ensemble in this period. For 366 

instance, in the case of Rogue River Basin, CRPSS is reduced by almost 2% in the validation 367 

period compared to the calibration for COP-EPP outputs. Meanwhile, this difference is about 368 

10% for MBG results. This schema is visible for the other two basins with less noticeable 369 

difference. 370 

Figure 7. CRPSS measure calculated for 3 basins after implementing two post-processing 371 

methods for the calibration (left) and verification (right) periods.  372 

 The ROC scores are presented in Figure 8. Both post-processing methods maintain a ROC score 373 

above 0.5, which is an encouraging outcome for the generated ensemble forecast. Comparing the 374 

results from the Southern Snake and Upper Colorado basins shows that COP-EPP generates the 375 

ensemble forecast with higher resolution than that of the MBG method. The difference between 376 

the two methods is more noticeable in Rogue River Basin, which receives relatively higher 377 

precipitation than the other basins. 378 

Figure 8.  Assessment of forecast resolution based on ROC score for winter (Dec, Jan, and Feb) 379 

precipitation during verification period (2001-2014). 380 

Since the focus of this study is to minimize the bias in the forecast, in addition to resolution, 381 

reliability of the generated forecast is evaluated for each basin. According to the formulation of 382 

reliability (eq. 21), the lower the score the more reliable the ensemble forecast will be. Figure 9 383 

illustrates that COP-EPP has a reliability score of less than 0.05 for approximately all the grid 384 

cells in the three basins. Although, in general, the MBG method, provides a reliable ensemble 385 

forecast across the basins, the COP-EPP shows noticeably better performance than the MBG . 386 

Since the reliability of the forecasts is examined for the ninety-fifth percentile of the observation, 387 
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this can also indicate the reliability of the generated forecasts on the extremes. Although both 388 

methods are shown capable of detecting the extremes, the COP-EPP demonstrates more accuracy 389 

on extreme values.  390 

Figure 9.  Reliability measure for winter precipitation (Dec, Jan, and Feb) calculated at 95
th

 391 

percentile of observation during the verification period (2001-2014). This measure ranges from 0 392 

to 1 with the optimal value of 0. 393 

4.5. Seasonal Evaluation of the Generated Ensemble Forecasts 394 

To study the performance of the generated ensemble precipitation based on the COP-EPP, 395 

seasonal precipitation is evaluated for each basin. Accordingly, the most probable ensemble 396 

member (the mode of the conditional pdf), which can substitute the raw forecast as a better 397 

predictor, is chosen for this purpose. For a clear inspection, the spatial average of the most 398 

probable ensemble member is utilized over the study basin.    399 

Results of seasonal assessment are summarized in Figure 10. In the figure, the observation is 400 

shown by the green line, the raw forecast is shown by the red line, the blue line displays the most 401 

probable ensemble member from the generated ensemble forecast by COP-EPP, and the black 402 

line represents the indicated ensemble member from MBG’s generated forecast. Overall, the 403 

post-processed forecast shows a significant improvement in describing seasonal precipitation 404 

distribution in comparison to the raw forecast. For an instance, in the spring, the precipitation 405 

distribution from the raw forecast (red line) overestimates the observation (green line), whereas 406 

the COP-EPP forecast almost follows the same distribution as the observation. In summer, the 407 

raw forecast distribution shows better performance compared to other seasons. On the other 408 

hand, in a severe condition such as Rogue River Basin, which is a coastal region, the raw 409 
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forecast is not able to follow the observation’s distribution. This is more noticeable in winter 410 

when basins receive more precipitation. 411 

Seasonal results for the Upper Colorado Basin, a semi-arid region, demonstrate no significant 412 

difference between precipitations in different seasons whereas in the Southern Snake Basin, 413 

spring and winter receive more precipitation than summer and fall. These changes become more 414 

significant when a coastal basin, such as the Rogue River Basin, is studied. In inspecting the 415 

results for the Upper Colorado Basin, it can be seen that the raw forecast is over-predicting the 416 

observation, especially in spring and winter. This pattern is approximately the same for the 417 

Southern Snake River Basin. However, in the Rogue River Basin, summers receive much less 418 

precipitation compared to other seasons. Observations for this basin show the same distribution 419 

pattern for a high level of precipitation in fall and spring. Results for winter in this basin show 420 

much higher precipitation with an average of about 600 mm. In comparing the raw forecast with 421 

the three other datasets, i.e. observation and two generated forecasts, results indicate that the raw 422 

forecast has higher seasonal precipitation values in all seasons with a significant difference in 423 

winter. In summer, the forecast is following the same distribution as the observation with minor 424 

under-prediction for the Rogue River Basin. Furthermore, in wet seasons, the generated forecasts 425 

successfully follow the observation distribution, whereas MBG is showing minor under-426 

prediction. In extreme cases, such as winter in the Rogue River Basin, the raw forecast shows a 427 

large bias while COP-EPP was successful in reducing the bias, similar to spring and fall. 428 

Overall, COP-EPP has shown significant potential in generating more reliable and accurate 429 

ensemble forecasts. Compared to the benchmark technique, COP-EPP shows more consistency 430 

in the validation period as compared to that of MBG. In the cases with extreme precipitation, 431 

COP-EPP still shows superior results. Lastly, COP-EPP is robust in conserving the spatial 432 
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pattern of calculated measures. Generally, results show higher accuracy in wet seasons; a 433 

specifically generated ensemble forecast is showing promising results in the extreme cases such 434 

as winter for the Rogue River Basin. 435 

Brown and Seo (2013) argue that back and forth transformation from Gaussian space can 436 

invalidate the optimality of estimated parameters of the conditional probability distribution. 437 

However, the improvement in the COP-EPP compared to the MBG can be attributed to the 438 

procedure used by COP-EPP to model the dependence structure between observation and 439 

forecast. COP-EPP joins the variables via their marginal distribution. Therefore, the complexity 440 

in the hydro-meteorological processes does not constrain modeling the joint behavior of 441 

observation and forecast (Dupuis, 2007; Madadgar & Moradkhani, 2014).  442 

Figure 10.  Probability density functions of seasonal precipitation from the observation, raw 443 

forecast, and most probable forecast based on the COP-EPP and MBG approach for three study 444 

basins. Seasonal precipitation is spatially averaged over all grid cells of each basin. Seasons are 445 

categorized in the following order: Spring (Mar, Apr, and May), summer (Jun, Jul, and Aug), fall 446 

(Sep, Oct, and Nov), and winter (Dec, Jan, and Feb).  447 

5. Conclusion and Summary 448 

The purpose of this study is to examine the accuracy and reliability of ensemble precipitation 449 

prediction utilizing copula functions. The technique is based on the relationship between the 450 

single value forecast and historical observation. Therefore, the assessment is done by comparing 451 

results from the new copula method with that of a well-known procedure, MBG.  452 

Comparison is undertaken by employing three different basins with semi-arid to coastal climates 453 

to study the performance of the techniques in different climate regimes. Deterministic 454 
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verification indicates promising improvement in the mean ensemble using the COP-EPP for 455 

generating ensemble precipitation forecast. In order to assess the forecast skill, probabilistic 456 

measures including CRPSS, reliability, and the ROC score are employed. The results of CRPSS 457 

indicate that the generated ensemble forecast from COP-EPP is more reliable and accurate in 458 

comparison to the meta-Gaussian one. Furthermore, through analysis of reliability, it is noticed 459 

that the copula- based method is more successful in generating the ensemble forecasts that 460 

represent extremes. The ROC score indicated that both techniques are capable of generating 461 

potentially useful ensemble forecasts with high resolution; however, in the basin with higher 462 

precipitation (i.e., Rogue River Basin), COP-EPP proves to be even more superior. 463 

Overall, both techniques show promising results, and existing procedures generated ensembles 464 

with acceptable reliability. However, using copula functions will help improve the quality of 465 

ensemble forecasting. COP-EPP is shown to be more precise in building the ensemble 466 

precipitation forecast. In other words, results demonstrate that the copula procedure is 467 

approximately independent of spatial and temporal changes in the data.  468 

It is worth mentioning that incorporating copula functions into EPP helps overcome the 469 

assumption of normal distribution for the observation and forecast. It is therefore possible to 470 

eliminate the transformation step in EPP procedure. Moreover, copula functions are capable of 471 

building joint distribution between two datasets with any level of dependency, and for any 472 

marginal distributions. These characteristics of copula functions help us generate more accurate 473 

ensemble forecast. 474 
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Figure 1. Schematic of the Copula-based ensemble post-processing (COP-EPP). The ensemble 

members are generated by sampling from conditional pdf and reconstructed according to 

Schaake shuffle. 
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Figure 2. The location of three study basins in the Western USA. 

 

 



 

 

 

Figure 3. Kling-Gupta efficiency measure for the raw forecast during calibration period. White 

grid cells in Rouge River Basin present missing observations. 

 

 



 



Figure 4. Selection of suitable copula functions for each grid cell across the Upper Colorado 

River Basin. 

 

 

 

Figure 5. Absolute percent bias distribution over the three study basins. The bias is calculated 

for the raw forecast (blue line), and the ensemble mean from the MGB and COP-EPP outputs 

(red and green lines, respectively). 

 

 



 

 

Figure 6. KGE measure calculated over the study basins after post-processing using the COP-

EPP and MBG methods during calibration (left) and verification (right) periods.  

 



 



Figure 7. CRPSS measure calculated for 3 basins after implementing two post-processing 

methods for the calibration (left) and verification (right) periods.  

 

 



Figure 8.  Assessment of forecast resolution based on ROC score for winter (Dec, Jan, and Feb) 

precipitation during verification period (2001-2014). 



 



Figure 9.  Reliability measure for winter precipitation (Dec, Jan, and Feb) calculated at 95
th

 

percentile of observation during the verification period (2001-2014). This measure ranges from 0 

to 1 with the optimal value of 0. 

 

Figure 10.  Probability density functions of seasonal precipitation from the observation, raw 

forecast, and most probable forecast based on the COP-EPP and MBG approach for three study 

basins. Seasonal precipitation is spatially averaged over all grid cells of each basin. Seasons are 



categorized in the following order: Spring (Mar, Apr, and May), summer (Jun, Jul, and Aug), fall 

(Sep, Oct, and Nov), and winter (Dec, Jan, and Feb).  

 

 

 



Table 1. Summary characteristics of the study basins 

Basin Name Drainage Area (km
2
) Annual Precipitation (mm) 

Upper Colorado 280000 164 

Southern Snake 180000 493 

Rogue 5318 970 
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